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The X-ray Scattering from a Hindered Rotator* 
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An expression is derived for the X- ray  scat tering from a crystal  containing groups of a toms in hin- 
dered rota t ion about  fixed axes. A Maxwel l -Bol tzmann distr ibution of the orientat ion angles of 
the groups is assumed, wi th  a sinusoidally varying hindering potential .  

Al though a corresponding expression is not  derived for the hindered rota tor  wi thout  a fixed axis, 
it is shown tha t  s t ructure-factor  da ta  in the  par t icular  case of perfluorocyclohexane lead to the con- 
clusion tha t  the molecule is not  a free ro ta tor  in the crystal,  but  either m a y  be a hindered ro ta tor  o r  

m a y  show orientat ional  disorder. 

Heretofore, the problem of the intensity of X-ray scat- 
tering from a crystal containing rotating groups has 
been solved only in the ease in which the groups rotate 
without hindrance or other influence on each other. 
Expressions for the X-ray scattering under such con- 
ditions have been given by Coster (1919), Kolkmejer 
(1920), Bijvoet & Ketelaar (1932), Finbak (1938), and 
Zachariasen (1945, pp. 223 ft.). Although the case of the 
hindered rotator is of great interest in crystallography, 
the calculation of the intensity of X-ray scattering from 
a crystal containing groups in hindered rotation has not 
been made heretofore. 

In the first part  of this paper, an expression for the 
amplitude of X-ray scattering for a particular case of 
the hindered rotator will be derived. The group of atoms 
will be considered to rotate about a fixed axis with a 
hindering potential varying sinusoidally with the angle 
of rotation. The rotator will be considered as a classical 
rotator with a Maxwell-Boltzmann distribution in the 
probabihty function of the rotation angle. 

Since, according to Zachariasen (1945, p. 213), the 
amplitude of Laue-Bragg scattering from a crystal 
containing rotating groups may be calculated as the 
complex sum of the average amplitudes of scattering 
from each of the atoms, disregarding the way in which 
the atoms are linked into groups, the problem reduces 
to the calculation of the X-ray scattering from a single 
atom in hindered rotation. 

No expression was derived for the X-ray scattering 
from the hindered rotator without a fixed axis, because 
of the great variety of potential functions which might 
be assumed. However, in the second part  of this paper, 
the special case of rotation of molecules of perfluoro- 
cyclohexane in the crystalline state will be treated. I t  
will be shown that  the observed structure factors do not 
agree with the structure factors calculated for free 

* This paper is in part material from a thesis submitted by 
M. V. King to the Graduate Faculty of the University of 
Minnesota in partial fulfillment of the requirements for t h e  
Ph.D. degree. 

t Present address : Department of Physics, The Pennsylvania 
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rotation of the molecules, the discrepancy being in the 
direction to be expected if the rotation of the molecules 
is hindered or if the molecules show orientational dis- 
order without rotation. 

Part I. Theoretical section 
Notation 

r - - t h e  instantaneous position vector of the atom in 
question. This vector may  be resolved into two 
components: 

k, the position vector of the center of rotation of the 
atom; and 

v, the vector from the center of rotation to the in- 
stantaneous position of the atom. 

g = the instantaneous complex scattering power of the 
atom (this is the quant i ty  which Zachariasen 
denotes by gL). 

~ = t h e  average complex scattering power of the atom 
(this is the quant i ty  which Zachariasen denotes by 
gD. 

f----the atomic scattering factor of the given atom. 
h - - t h e  reciprocal-lattice vector of the reflection con- 

sidered. 
0- - the  rotation angle of the atom considered, measured 

from the projection of h on the plane of rotation 
of the atom. 

V0=the height above the minimum of the potential 
barrier to rotation. 

V = t h e  value of the potential for the given rotation 
angle O. 

~k=the angle between the axis of rotation and the 
vector h. 

7 = t h e  rotation angle corresponding to a potential 
minin2um. 

n = the number of potential minima. 

Calculation of complex scattering power 
The instantaneous complex scattering power g is 

given by 

g =fexp [2nih. r] = f e x p  [2nih. k] exp [2nih. v]. 
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For any given probability function P(0), the average 
value of the complex scattering power is given by 

~ = f e x p  [2nih. k] P(O) exp [2rrih. v] dO. 
0 

Now, the probability distribution is to be a Maxwell- 
Boltzmann distribution with a potential function 

V = - ½ V0 cos n(O-7). 

Hence, the probability distribution is given by 

exp IV0 cos n(O- 7)/2kT] 
P ( o ) =  

f 0 e x p  [Vo cos - 7 ) / 2 k T ]  n ( 0  d0 

We may  express the quant i ty  2zrih. v in terms of 0 
and certain quantities determined by the conditions of 
diffraction: 

2n ih .v  = 2hi I h ]] v I sin ~r cos 0. 

Now let us represent the quant i ty  Vo/2kT by the 
symbol b, and the quant i ty  2~ I h l] v ] sin ~r by the 
symbol a. We may now give an expression for the in- 
tegral in the equation defining ~ in terms of a, b, n and 7. 
Using the symbol M~n(a , b) for this integral, we find 

M~(a, b) = P(O) exp [2nih. v] dO 
o 

f~ "exp [b cos n(O- 7) + cost9] ia dO 

f: " exp  [b cos n ( O -  7)] dO 

The integral in the numerator of this expression is 
related to the integral expressions of the Bessel function. 
A search for an integral expression of this form was un- 
successful. However, it was possible to expand the 
integrand in an infinite series, and thus evaluate the 
integral as an infinite series. 

From an expansion given by Watson (1944, p. 22), 

exp [iz sin O] = Jo(z) + 2 ~ J~(z) cos 2m0 
m = l  

Then the integral in the numerator of the M function 
becomes 

; "  [~=oe~ l~ (ia) c°s mO~ 

× I~(b) cospn(O-7) dO 

= cosm0(cosp 0eosp 7 
m = O p = O  0 

+ sinpnO sinpnT) d0. 

Making use of the orthogonality of sines and cosines, 
we may simplify this integral to 

f2 ~Z e~,~e~, I~n(ia) I~(b) eos2pn0 cospn 7 dO 

GO 

= 2rr ~ e~,iv'~J,n(a ) I~(b) cospn 7. 
p = 0  

According to this formula, the integrM in the de- 
nominator of the 3t" function is equal to 2rrlo(b ). Hence 
we may give as an expression of the 3 / func t ion  

M~(a,b)= ~ e~i~nJ~n(a) I~(b) cospny/Io(b ). 
p=O 

Then the expressions for ~ and for the structure 
factor F in terms of the M function are 

= f e x p  [2nih. k] MYn(a, b), 
F - -  X g~ = Z f j  exp [2nih .l~.] M~(aj, bj), 

i i 
where the summation is over the atoms in the unit  cell. 

The uniform convergence of the series for the M 
function as a function of a may  be established by the 

• use of a theorem due to Pincherle, demonstrated by 
Watson (1944, p. 526). This theorem states tha t  a series 

n=O 

converges over the same circle of convergence and has 
the same singularities as an associated power series 

an(½z)v+n/P(p+n+ 1). 
n = 0  

The associated power series for the M function as a 
function of a, b being fixed at any arbitrary value, is 

+2i ~ Jgm+l(z) sin(2m+ 1) 8, 
m ~ O  

we may  derive, letting z = - i x ,  and remembering tha t  

J~( -  iz) = ( - i) n I~,(z), and cos 0 = sin (1-1r- 0), 

exp [x cos 0] = Io(x ) + 2 ~ I,~(x) cos mO 
m = l  

co 

= • e~I,n(X)cosmO, 
m=O 

where e~ = 1 when m = 0, and e~ = 2 when m ~: 0. 

oo 
%ivnI~(b) cospn7({a ) vn/Io(b ) (pn) !. 

p=O 

This series is seen to converge in the same manner as 

(½ia)vn/(pn) !, 
p=O 

which converges uniformly over any bounded interval 
of a if n is a positive integer. 

To test the convergence of the series as a function of 
b, we should note tha t  I~(b) is positive, and that  
I~,(b)/Io(b ) < 1 for all positive b, including +oo, if p is 
a positive integer. For. this reason, since the series 
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converges when b =0 ,  it must converge uniformly for 
all positive values of b including infinity. 

The special values of the M function when b = 0 and 
b = oo are of interest. When b = 0, the M function be- 
comes J0(a), which is the result found for the free 
rotator by Bijvoet & Ketelaar (1938) and Zachariasen 
(1945, pp. 223 ft.). The physical meaning of setting 
b = oo is that  only the positions of minimum potential 
are available for the rotating group, each position having 
an equal probability. This case is similar to the model of 
orientational disorder proposed by Frenkel (1935), just 
as the case in which b is finite is like the model of the 
hindered rotator proposed by Pauling (1930). The 
scattering power of an atom which is distributed with 
equal probability among n equivalent positions in a 
circle about the origin is 

n 

(l/n) ~] fexp[iacos(y+2nm/n)]. 
m----1 

Consequently, the limit of the M function as b 
approaches infinity should be, from physical reasoning, 

/b 

M~(a, oo)=(1/n) ~ exp[iacos(y+2nm/n)]. 
m = l  

This result was not proved analytically, in the general 
case, but its validity was proved for the case of n = 2. 

Values of the M function for particular values of 
a, b, n, and 7 are given in Table 1. 

M~(a, b) b = 0 1 
a=O 1.0000 1.0000 

1 0.7652 0.6632 
2 0.2239 - - 0 . 0 8 3 8  

M~(a, b) 
a=O 1.0000 1.0000 

0.2 0.9900 0.9900 
0.4 0.9604 0.9605 
0.6 0 - 9 ~  0.9123 
0.8 0.8463 0.8472 
1.0 0.7652 0.7674 
1.2 0.6711 0.6756 
1.4 0.5669 0.5750 
1.6 0.4554 0.4688 
1.8 0.3400 0.3607 
2.0 0.2239 0.2543 
2.2 0.1104 0.1530 
2.4 0.0025 0.0599 
2.6 - - 0 . 0 9 6 8  - - 0 . 0 2 1 8  
2.8 - - 0 . 1 8 5 0  - - 0 . 0 8 9 8  
3.0 - -0 .2601  - -0 .1421  

M~'(a,  b) 
a = 0  1.0000 1.0000 

0.2 0.9900 0.9900 
0.4 0.9604 0-9603 
0.6 0.9120 0.9117 
0-8 0.8463 0.8454 
1.0 0.7652 0.7630 
1.2 0.6711 0.6666 
1.4 0.5669 0-5588 
1.6 0.4554 0-4420 
1.8 0.3400 0-3193 
2.0 0-2239 0-1935 
2.2 0.1104 0.0678 
2.4 0.0025 --  0.0549 
2.6 --  0.0968 - - 0 . 1 7 1 8  
2.8 --  0.1850 - - 0 . 2 8 0 2  
3.0 - -0 .2601  - - 0 . 3 7 7 8  

Part H. Study of the rotating group in 
perfluorocyclohexane 

157 

Perfluorocyclohexane is an example of a crystal con- 
raining rotating groups without a fixed axis, according 
to the data of Christoffers, Lingafelter & Cady (1947). 
The present work consists in the application of the 
theory of diffraction of X-rays from crystals containing 
rotating groups to find whether the groups rotate freely 
with spherical symmetry on the average, or show hin- 
dered rotation or orientational disorder without rotation. 

Verweel & Bijvoet (1938) and Zachariasen (1945, 
pp. 223 ft.) gave an expression for the structure factor 
of a crystal containing rotating groups under the 
assumptions of free rotation with spherical symmetry 
on the average, without interactions between the 
groups. The expression is 

2 " s m 2 ~ r l h l l v j l  
F = ~ f ~ e x p [ i  mh.k j ]  ~n~i-fii[vj[ , 

where the summation is over the atoms in the unit cell. 
Discrepancies of the observed structure factors from 
values calculated from this expression may be caused 
by internal heat motion of the rotating group, which 
will reduce the structure factors, or by hindrance of the 
rotation (or the existence of orientational disorder with- 
out rotation), which may increase the structure factors 
of some of the reflections considerably. 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 
0.9605 0.9605 0.9605 0.9605 0.9605 0.9605. 
0 .9124 0-9125 0.9125 0.9125 0-9125 0.9127 
0.8477 0.8479 0.8480 0-8481 0-8481 0.8484 
0.7687 0.7692 0.7695 0.7697 0-7698 0.7702 
0.6781 0.6792 0-6797 0.6800 0.6802 0.6812 
0.5796 0.5816 0.5826 0-5832 0.5835 0.5850 
0.4763 0.4797 0.4813 0.4822 0.4828 0.4854 
0-3724 0.3776 0.3801 0.3814 0.3823 0-3864 
0.2713 0.2790 0.2826 0.2846 0.2859 0.2919 
0.1770 0.1878 0.1929 0.1958 0.1976 0.2057 
0.0923 0.1068 0.1137 0.1175 0.1200 0.1313 

- - 0 . 0 2 0 6  0.0395 0.0485 0.0535 0.0568 0.0716 
- - 0 . 0 3 6 0  - - 0 . 0 1 2 0  - - 0 . 0 0 0 6  0-0059 0.0099 0.0289 
- - 0 . 0 7 5 6  - - 0 . 0 4 5 8  - - 0 . 0 3 1 6  --  0.0236 --  0.0185 0.0050 

1.0000 1.0000 1.0000 1-0000 1.0000 1.0000 
0.9900 0,9900 0.9900 0.9900 0.9900 0.9900 
0.9603 0.9603 0-9603 0.9603 0.9603 0.9603 
0.9116 0.9115 0.9115 0-9115 0.9115 0.9113 
0.8449 0.8447 0.8446 0.8445 0.8445 0.8442 
0.7617 0.7612 0.7609 0.7607 0.7606 0.7602 
0.6641 0.6630 0-6625 0.6622 0.6620 0.6611 
0.5542 0.5522 0.5512 0.5506 0.5503 0.5487 
0.4345 0.4311 0.4295 0.4286 0.4280 0.4254 
0.3076 0.3024 0.2999 0.2986 0-2977 0.2936 
0.1765 0.1688 0.1652 0.1632 0.1619 0.1560 
0.0439 0.0332 0.0281 0.0253 0.0235 0.0152 

- - 0 . 0 8 7 2  - - 0 . 1 0 1 6  --  0 .1084 --  0.1123 --  0.1147 --  0.1260 
- - 0 . 2 1 3 9  - - 0 . 2 3 2 7  - - 0 . 2 4 1 6  - - 0 . 2 4 6 6  -- 0.2498 --  0.2645 
- - 0 . 3 3 3 6  - - 0 . 3 5 7 4  - - 0 . 3 6 8 8  - -0 .3751  - -0 .3791  - - 0 . 3 9 7 8  
- - 0 . 4 4 4 0  --  0.4735 - - 0 . 4 8 7 5  - - 0 . 4 9 5 3  -- 0.5003 --  0.5231 

Table 1. Values of the M functions 
2 3 4 5 6 oo 

1.0000 1.0000 1.0000 1.0000 ] .0000  1.0000 
0-6064 0.5814 0.5696 0.5632 0-5590 0.5403 

- -0 .2481  - - 0 . 3 1 6 8  - - 0 . 3 4 7 5  - - 0 . 3 6 3 8  - - 0 . 3 7 3 6  --  0.4162 
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The structure factors were calculated according to 
the expression given above without  the introduction 
of a temperature  factor, and with the assumption of 
either the chair or the boat  form of the C6F1~ molecule 
with the distances r c c =  1.50 A. and rCF = 1"35 A. The 
structure was assumed to be the face-centered cubic 
packing of rotat ing molecules with a0= 10.00 kX. re- 
ported by  Christoffers et al. (1947). The values of the 
structure factor found experimental ly  by  these authors 
are compared with the calculated values in TabIe 2. 
All sets of values are reduced to a scale with F m = 10.0. 

Table 2. Comparison of calculated and observed 
structure factors 

hkl F~c " (chair) F¢~. (boat) Fob.. 
111 +10.0 +10.0 10.0 
200  + 5.2 + 5.3 5.5 
220  --  2.9 --  2.7 4.5 
222  - -  2.9 - -  2 .9 7.7 
311 --  3.3 - -  3.2 5.5 
331 --  0 .4  --  0 .2 1.4 
333  + 0.5 + 0.5 3.2 
400  - -  1.4 - -  1.2 3.9 
420  --  0.1 0 .0  2 .0  
422  + 0 .4  + 0.5 0.0 
440 + 0.2 + 0.1 1.7 

The decline of the observed structure factors is seen 
to be much  slower than  the decline of the calculated 
structure factors. There was apparent ly  no appreciable 
difficulty due to absorption, since the size of the sample 
was about  30 % smaller t han  the  opt imum size. I t  is 
reasonable to conclude tha t  we are dealing with highly 
hindered rotat ion of the molecules or with orienta- 
t ional  disorder. This conclusion is corroborated by  the 
point  raised by  Christoffers et al. (1947) tha t  the 
fluorine atoms of adjacent  molecules would approach 
each other with a m i n i m u m  distance much  smaller than  
twice the van  der Waals  radius of fluorine, ff the mole- 
cules rotated freely. Values of the m i n i m u m  distance of 
approach of fluorine atoms calculated by  the present 

authors are 1.78 A. for the boat  form and 1.68 A. for the  
chair form of the C~FI~ molecule, al though the value 
of the van  der Waals  radius of fluorine is 1.35 A., 
according to Pauling (1945, p. 176). 

Fur ther  s tudy of the hindered rotator without  a fixed 
axis could be carried out by  calculation of the scat- 
tering powers of assumed models of the hindered 
rotator, or by  preparat ion of electron-density maps  of 
the crystal. An a t tempt  was made to find the orienta- 
tions of m a x i m u m  probabi l i ty  for the molecules of C6F1~ 
by  a three-dimensional  Fourier  summation.  However, 
the signs of some of the terms could not  be fixed because 
of difficulties with non-convergence, and no conclusions 
could be drawn. 
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Application of the method of Fournet & Gulnler (1947) 
for correcting low-angle scattering measurements for the 
influence of the finite height of the X-ray beam is limited 
to materials for which ~he intensity of low-angle scattering 
decreases to virtually zero at a small angle. An alternative 
method of correctiori described by Shull & Roess (1947) 

requires tha~ the observed intensity curve be represented 
by the sum of a number of Gaussian curves, and this is not 
always possible. The approximate method described below 
can be applied very rapidly to a low-angle scattering curve 
of any form. 

Any point A on the equator A1A ~ (Fig. 1) receives 


